Algebra identities
a2 - b2 = (a-b)(a+b)
- a3 - b3 = (a - b)(a2+ ab + b2)
- a3 + b3 = (a + b)(a2 - ab + b2)
- (a + b)2 = a2 + 2ab + b2
- (a - b)2 = a2 - 2ab +b2
- (a + b)3 = a3 + 3a2b + 3ab2 + b3
- (a - b)3 = a3 - 3a2b + 3ab2 - b3
- ----------------------------------------------------------------------------------------------------------------------------
Consider the following arithmetic progression:
- a + (a + d) + (a + 2d) + (a + 3d) + ...
- a is the initial term
- d is the common difference
Nth Term, Tn = a + (n - 1)d
-
The sum of the first n terms of the arithmetic progression is:
- -----------------------------------------------------------------------------------------
- Consider the following geometric progression:
- a + ar + ar2 + ar3 + ...
- a is the scale factor
- r is the common ratio
- Nth Term , Tn = ar n - 1
- The sum of the first n terms, Sn is:
- ------------------------------------------------------------------------------------------------------------------------
No comments:
Post a Comment